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ABSTRACT 
Hyperspectral imagery allows investigators to identify remote sensing 
opportunities for farmers and surveyors particularly at narrow regions along the 
electromagnetic spectrum that have been, until recently, difficult to study. The 
objectives of this study were to: (1) use statistical techniques to identify spectral 
bands that relate well with the delineations of a detailed soil survey and (2) 
determine how accounting for spatial autocorrelation affects the statistical 
analyses. A detailed first order (1:3,744) soil survey was created for a field in 
Calloway Co., Kentucky. Hyperspectral imagery was obtained with a Real-time 
Data Acquisition Camera System (RDACS-3), which had a 2 by 2-m pixel 
resolution and 120 spectral bands (471 to 828 nm in 3-nm increments). For each 
band, a one-way analysis of variance (did not account for spatial autocorrelation) 
and two random field analyses (accounted for spatial autocorrelation) were used 
to determine the extent to which variability was greater between than within map 
units (F-ratio). The analyses were greatly affected by the degree to which spatial 
variability was taken into account. Regions of the spectrum with larger F-values 
included 537 to 573, 723 to 744 and 816 to 822 nm. Slope and erosion classes 
were related to spectral radiant intensity; however, the relationships may or may 
not be band specific. 
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INTRODUCTION 
  
  

Accurate soil information is cruc ial for soil use and management 
decisions. Unfortunately, routine soil surveys are not developed at an adequate 
scale for many applications (Moore et al., 1993; Robert, 1993; Bell et al., 1995; 
Pierce and Nowak, 1999). Precision agriculture technologies may add to the value 
of soil survey information by improving soil survey accuracy and the efficiency of 
survey development. Our interest was with remote sensing as a tool for enhancing 
the quality of soils information available to land managers and surveyors.  

Soil reflectance is strongly affected by soil organic matter (Henderson et 
al., 1989; Schulze, 1993; Chen et al., 2000), soil moisture (Schulze, 1993), texture 
(Schulze, 1993), iron oxides (Schwetmann, 1993), mineral composition, and the 
presence of vegetation. Spatial variation of these soil properties at the soil surface 
can be indicative of major soil differences in drainage, erosion, soil moisture, the 
presence or absence of soil horizons, slope, texture, parent materials, vegetation, 
soil depth, fertility, and others. Drainage, erosion, soil horizons, slope and parent 
material are also basic criteria for classification of soil across landscapes.  

In this study, we used hyperspectral imagery to identify bands that would 
correlate well with mapped soil phases of a detailed soil survey for a field in 
Calloway Co., Kentucky. The fundamental premise was that if a band could be 
useful in delineating soil types, then the variability of the radiant intensity would 
be greater between rather than within soil phase boundaries (F-ratio). Our 
secondary interest was to determine how different methods of analysis would 
affect statistical tests. Specifically, we were interested in determining how 
accounting for the spatial autocorrelation of the residuals affects the 
interpretations. Typically, these autocorrelations are ignored, but some argue that 
they should be included in the statistical model (Schabenberger and Pierce, 2002).   
 
 

MATERIALS AND METHODS 
  

A first order soil survey was created for a 15-ha field in Calloway Co. 
(36°32’37”N, 88°27’7”W) at a scale of 1:3,744 (Fig. 1). Two experienced Natural 
Resource and Conservation Service soil scientists obtained soil cores (1.1 m in 
depth and 5 cm diameter) on a 61-m regular grid with a truck mounted hydraulic 
soil probe. Six soil series were identified and 17 delineations were made in 11 
man hours. The locations of some of the map unit boundaries were fine tuned 
with additional observations made with a hand probe (2.5-cm diameter). A grass 
waterway in the middle of the field (north-south direction) was not mapped. 

The soils in this field included the Calloway, Grenada, Henry, and 
Purchase series, developed from loess, and Falaya and Kurk series, developed 
from silty alluvium derived from loess (Table 1). Many of the series have 
fragipans within the upper 1 m including the Grenada (51 to 76 cm), Calloway



Fig. 1. First order soil survey. 

 
 
Table 1. Soils information. 

Series Symbol Slopes Classification 

Calloway silt loam CaA 0 to 2% fine-silty, mixed, active,  
thermic Aquic Fragiudalfs 

Calloway silt loam,  
  severely eroded 

CaB3 2 to 5% fine-silty, mixed, active, thermic  
Aquic Fragiudalfs, severly eroded 

Falaya silt loam Fa 0 to 2% coarse-silty, mixed, active, acid,  
thermic Aeric Fluvaquents 

Grenada silt loam GrA 0 to 2% fine-silty, mixed, active, thermic 
Oxyaquic Fraglossudalfs 

Grenada silt loam GrB 2 to 5% fine-silty, mixed, active, thermic  
Oxyaquic Fraglossudalfs 

Grenada silt loam,  
   eroded 

GrB2 2 to 5% fine-silty, mixed, active, thermic  
Oxyaquic Fraglossudalfs 

Henry silt loam Hn 0 to 2% coarse-silty, mixed, active, thermic  
Typic Fragiaqualfs 

Kurk silt loam KrA 0 to 2% fine-silty, mixed, thermic Aeric  
Epiaqualfs 

Purchase Silt loam PuB 2 to 5% coarse-silty, mixed,  
thermic Ochreptic Fragiudalfs 

 
 



(51 to 91 cm), Henry (61 to 91 cm), and Purchase (30 to 43 cm) soils. The 
Grenada (moderately well drained), Calloway (somewhat poorly drained), and 
Henry (poorly drained) series are members of the Memphis hydrosequence. The 
Purchase series range from moderately well to well drained. The Falaya is a 
somewhat poorly drained member of the Vicksburg hydrosequence. The GrB2 
phases were moderately eroded and the CaB3 phase was severely eroded (Table 
1). The newly established Purchase series replaced the excessively eroded phases 
of Grenada and Loring soils found in older soil surveys. The Kurk is also a 
somewhat poorly drained soil that is similar to the Calloway soil but does not 
have a fragipan.  

Elevation measurements were collected along a 7-m transects using 
Trimble ® 4600 (Trimble, Ltd., Sunnyvale, CA) GPS receivers. Digital elevation 
models (DEM) were generated on 4-m grids using ANUDEM (Australian 
National University, Australia). The DEMs were used to calculate percent slope. 

The field had been planted to corn in 19 April 2001. On 16 May 2001, 
Hyperspectral imagery was obtained with a Real-time Data Acquisition Camera 
System (RDACS-3), which had a 2x2 meter pixel resolution and 120 spectral 
bands (471 to 828 nm in 3-nm increments). A linear spectral unmixing technique 
with end-member spectra was used to remove vegetation effects from the data. 
Each pixel in the image was classified as belonging to one of the nine soil phases 
(Table 1) using feature extraction techniques.  

For each of the 120 spectral bands, a one-way analysis of variance (AOV) 
and two random field approaches (RF1 and RF2) (Schabenberger and Pierce, 
2002) were used. For the AOV approach, 5000 of the pixels were randomly 
chosen and analyzed using SAS® procedure GLM. This assumes that the 
variance-covariance matrix for the error terms is diagonal with homogeneous  
variance. Note that this assumption implies a constant variance on the diagonal 
and that all correlations between pixels are zero.   

For the random field analyses, the residuals were considered to be 
spatially autocorrelated. In the RF1 approach, all spatial autocorrelation (for pairs 
of pixels in the same soil phase and for pairs of pixels in different soil phases) was 
taken into account. Because the manipulation (e.g., inversion) of these matrices 
was so computationally demanding, only a smaller subset of randomly selected 
pixels could be used. We used 900. 

The RF2 approach accounted only for spatial autocorrelation of the 
residuals within soil phases, thus ignoring autocorrelation between phases. A 
larger dataset (n = 5000) was used because the RF2 approach was less 
computationally demanding than RF1. The resulting variance-covariance matrix 
became block diagonal which could be manipulated more easily (e.g., the inverse 
of a block diagonal matrix is block diagonal).  

For both RF1 and RF2 approaches, SAS® procedure MIXED with the 
exponential covariance structure [TYPE = SP(EXP)], along with the local option, 
was used to model the variance-covariance autocorrelation structure 
(Schabenberger and Pierce, 2002). Differences between soil phase units were 
included in the model as fixed effects and the analysis was done using the 
maximum likelihood method (METHOD = ML).   

  
 



RESULTS AND DISCUSSION 
 
  

For the AOV approach, the greatest peak in F-value occurred at the 
beginning of the infrared region at about 741 nm (Fig. 2a). The RF1 approach 
(account ing for all spatial autocorrelation) (Fig. 2b) produced more noisy results 
than did the other two approaches, most likely due to the smaller subset of data 
used in the analysis (n=900) and perhaps also to confounding of between-map-
unit differences with effects of spatial autocorrelation (i.e., difficulty in 
numerically distinguishing whether variation between soil phases is or is not 
explainable by large scale spatial autocorrelation). Unfortunately, memory 
problems occurred with the larger dataset (n=5000). Although, there was a peak in 
the 550 to 650 nm region, it was rather weak. We were reluctant to draw  
 
Fig. 2. F-ratios as a function of wavelength. 

 



conclusions from this data because of the small sample size. The RF2 approach 
(accounting for only within-soil-phase spatial autocorrelation and using a larger 
sample size, viz., n = 5000) (Fig. 2c) produced less noisy results and showed 
several notable peaks, particularly at 555 and 822 nm.  
 
Fig. 3. Hyperspectral imagery (radiance) at three wavelengths. 

 
 

At 555, 741, and 822 nm (Fig. 3), there was a region of low radiant 
intensity in the northwest corner of the field coinciding with the most poorly 
drained soil phase in the field (Hn). However, there was not a consistent 
relationship between drainage class and radiant intensity. For example, the 
moderately well drained GrA phase had lower reflectance values than the 
somewhat poorly drained CaA phases. There were stronger relationships, 
however, between slope class and spectral radiant intensity values. Soils with A 
slopes tended to have higher radiant intensity values than soils with B slopes (Fig. 
1, 3, and 4). Less sloping regions may be wetter and darker colored. Greater 
erosion on the steeper slopes may also explain differences in radiant intensity.  
Areas with the largest radiant intensity values were the most eroded soils in the 
field: GrB2, CaB3, and PuB phases (Table 1, Fig. 3). This was particularly 
evident when comparing eroded and uneroded phases of the Grenada soil. Both 
GrB map units had lower radiant intensity values than the moderately eroded 



GrB2 map units. If erosion was a major factor affecting soil reflectance, it was not 
evident  in the differences across the field in surface (0 to 15.2-cm) organic matter 
(Fig. 5).  

Many of the relationships between spectral radiant intensity and map 
phases were more general and not specifically related to one region of the 
spectrum. Of the wavelengths examined, the lower wavelengths (555 and 741) 
had greater signal to noise ratios than the higher wavelength (822). The 741 band 
generally had better relationships with slope class and erosion classes, but 
whether this reflects actual correlations or is a random occurrence is not known.  
The 741 band is in the near infrared region of the spectrum and generally is not 
considered an important region for soils.   

 

Fig. 4. Slope (%) Map. 

 
 
Fig. 5. Organic matter (%) on digital elevation model surface. 

 
 



SUMMARY AND CONCLUSIONS 
 

The analyses were greatly affected by the degree to which spatial 
variability of the residuals was taken into account. When spatial variability was 
not taken into account (AOV), there was a peak between 723 and 744 nm. This 
range appeared to provide the most information about slope and erosion phases. 
When all the spatial variability of the residuals (RF1) was taken into account, the 
peaks were much less abrupt. The dataset for this analysis was truncated because 
of the large computational resources required. When assumptions about spatial 
autocorrelation were relaxed (RF2) and only within map unit spatial 
autocorrelation was taken into account, the F-values were most similar to the F-
values for the RF1 approach, although not identical. The less computationally 
demanding RF2 approach may be the most realistic approach for taking into 
account spatial autocorrelation.  The RF2 approach indicated that there were two 
major peaks at 537 to 573 and 816 to 822 nm; however, maps at these 
wavelengths did not necessarily provide more information about soil properties 
than the maps of the bands indicated by the approach that did not take into 
account spatial autocorrelation (AOV).  
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